The First Example of a d^3 - d^3 Dinuclear Compound containing Four-co-ordinate Metal Atoms sharing a Pair of Bridging Ligands: $[(Bu^tO)_2W(\mu-PPh_2)]_2$

William E. Buhro, Malcolm H. Chisholm,* Kirsten Folting, Bryan W. Eichhorn, and John C. Huffman Department of Chemistry and Molecular Structure Center, Indiana University, Bloomington, IN 47405, U.S.A.

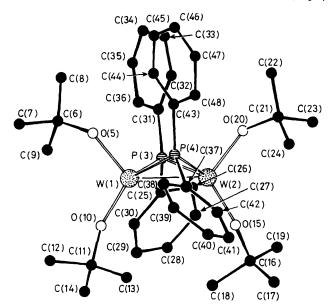
(p-Tolyl)(ButO)₂W \equiv W(OBut)₂(p-tolyl) and Ph₂PH (2 equiv.) react in hydrocarbon solvents to give toluene (2 equiv.) and [(ButO)₂W(μ -PPh₂)]₂ which in the solid state contains a puckered W₂P₂ moiety, W–W 2.59 Å; in solution the W₂(μ -PPh₂)₂ moiety is undergoing rapid inversion on the n.m.r. time-scale.

Since Wilkinson's¹ discovery of the unbridged compounds $M_2(CH_2SiMe_3)_6$, where M = Mo and W, numerous other examples of ethane-like molecules of formula $X_3M\equiv MX_3$, (I), or $X_2(Y)M\equiv M(Y)X_2$, (II), have been prepared and characterized and the chemistry of the M-M triple bond of configuration $\sigma^2\pi^4$ has been systematically developed.^{2,3} Rather interestingly, not one example of the alternate structure (III), where the metal atoms are four-co-ordinate and share a pair of bridging ligands, has yet been reported. The structural type (III), is, of course, the more common in co-ordination chemistry where dimerization of two co-ordinatively unsaturated MX_3 groups occurs by bridge formation e.g. as in Al_2Cl_6 .

The preference for structural types (I) and (II), for Mo and W, reflects the importance of M-M bonding. In (III), the fusing of two tetrahedra along a common edge can at best lead

to a M–M bond of configuration $\sigma^2\pi^2\delta^2$ which, taken together with an increased M–M separation as a result of the μ -X groups, will result in a significant sacrifice of M–M bond strength. The situation is also influenced by the π -donor properties of the ligands X and Y. In (I) and (II), π -donation to the metal atoms can occur without weakening the M–M bond whereas in (III) π -donation from the terminal ligands will further weaken the M–M bond by interaction with metal d orbitals otherwise used for M–M bonding.

Formation of a d^3 - d^3 dinuclear compound of type (III) requires the introduction of at least two ligands Y that have a high thermodynamic preference for bridging two metal atoms. They should also be significantly weaker π -donor ligands than the groups X. The compounds of formula $M_2(PR_2)_2X_4$ where M = Mo or W and X = OR or NMe_2 seemed likely to favour structural type (IIIb) over (II). A rational synthesis of such a


compound involves the reaction between a $M_2R'_2(OR)_4$ compound,⁴ which is co-ordinatively unsaturated, and a dialkyl or diarylphosphine R_2PH . We report here the first success of this synthetic strategy and our characterization of a compound of type (IIIb), namely $[(Bu^tO)_2W(\mu-PPh_2)]_2$.

Hydrocarbon solutions of (p-tolyl)(Bu^tO)₂W≡W(OBu^t)₂-(p-tolyl) react with Ph₂PH (2 equiv.) according to equation (1) to yield dark orange solutions from which [(Bu^tO)₂W(μ-PPh₂)]₂ is obtained in ca. 60% yield as brown crystals. The

1,2-W₂(p-tolyl)₂(OBu^t)₄ + 2Ph₂PH
$$\xrightarrow{22 \text{ °C}}$$
Hexane
$$[(Bu^tO)_2W(\mu\text{-PPh}_2)]_2 + 2 \text{ Toluene} \quad (1)$$

new compound, like its precursor tungsten complex, is air-sensitive and must be handled in dry and deoxygenated solvents and atmospheres (N₂). N.m.r. spectroscopy ([${}^{2}H_{8}$]toluene, 22 °C) shows only one type of Bu¹O and one type of PPh₂, having equivalent phenyl rings. The ${}^{31}P$ resonance possesses satellites due to coupling to two equivalent ${}^{183}W$ nuclei, and the *ipso*-carbon atoms of the phenyl rings show both one-bond (40 Hz) and three-bond (4 Hz) couplings to phosphorus. These data† support a time-averaged molecular structure (IIIb) for [(Bu¹O)₂W(μ -PPh₂)]₂, having $C_{2\nu}$ symmetry.

A ball-and-stick drawing of the structure found in the solid state‡ is shown in Figure 1. While the general prediction of

Figure 1. A ball-and-stick diagram of the $[(Bu^tO)_2W(\mu-PPh_2)]_2$ molecule viewed nearly perpendicular to the virtual O_4W_2 plane showing the puckered central W_2P_2 moiety: the dihedral angle between the P(3)-W(1)-W(2) and P(4)-W(1)-W(2) planes is 136.4° . Pertinent bond distances (Å) and angles (°) are W-W 2.591(2); W(1)-P(3), W(1)-P(4), W(2)-P(4) 2.36(1); W(2)-P(3) 2.33(1); W(1)-O(5) 1.95(1); W(1)-O(10) 1.86(2); W(2)-O(15) 1.84(2); W(2)-O(20) 1.95(2); P(3)-W(1)-P(4) 101.2(2); P(3)-W(1)-O(5) 99.7(4); P(3)-W(1)-O(10) 126.2(5); P(4)-W(1)-O(5) 92.1(4); P(4)-W(1)-O(10) 120.4(5); O(5)-W(1)-O(10) 110.4(7); P(3)-W(2)-P(4) 102.1(2); P(3)-W(2)-O(15) 119.8(5); P(3)-W(2)-O(20) 89.8(5); P(4)-W(2)-O(15) 125.0(5); P(4)-W(2)-O(20) 99.2(5); O(15)-W(2)-O(20) 113.9(7); W(1)-P(3)-W(2) 66.6(2).

terminal alkoxides and bridging phosphido ligands is confirmed, the molecular structure is significantly distorted from (IIIb). The co-ordination about the tungsten atoms is grossly distorted from tetrahedral. The central $W_2(\mu-P)_2$ core is puckered, not planar, and the terminal ButO ligands are of two types, those with short W-O distances, 1.85 Å and large W-O-C angles, 158°, and the others with long W-O distances, 1.96 Å and smaller W-O-C angles, 128°. The local coordination at each metal atom may be described as a trigonal bipyramidal (tbp) fragment, WO₂P₂X, where X represents a missing axial vertex. The central W₂O₄P₂ unit represents two cofacial tbp WO₂P₂X units sharing a common pair of equatorial ligands, PPh2, and a common missing axial site X. In this way O(5) and O(20), which have the long W-O distances, occupy the axial sites trans to the missing vertex. Diagrammatically, this is depicted by (IV).

The W–W distance of 2.59 Å is ca. 0.3 Å longer than those in unbridged d^3 – d^3 ditungsten compounds and a simple M–M bonding description in the new phosphido-bridged compound is not viable since there must be extensive mixing of orbitals involved in M–M and M–ligand bonding. Nevertheless there must exist at least a M–M σ bond, which in terms of the fusing together of two tbp WO₂P₂X units would involve a bent M–M bond formed from overlap of d_z^2 orbitals at the μ -X site. It seems likely that M–M bonding is responsible for the puckering of the central M₂P₂ unit. The present W–W distance of 2.59 Å is similar to that reported for the d^4 – d^4 anion $W_2(\mu$ -Pcy₂)₃(Pcy₂)₂– (cy = cyclohexyl), 2.55 Å.6

In related work, we have been studying the metathetical reaction shown in equation (2). For reactions involving

[†] Selected n.m.r. data for $[(Bu^cO)_2W(\mu-PPh_2)]_2$: ${}^{31}P\{{}^{1}H\}$ (p.p.m., C_6D_6 , 22 °C) 212.8 [s, $J({}^{31}P_{-}{}^{183}W)$ 349 Hz, satellites of 25% integral intensity], ${}^{1}H$ (δ , C_6D_6 , 22 °C) 1.27 (s, Bu^cO); $[(NMe_2)_2W(\mu-Pcy_2)]_2$: ${}^{31}P\{{}^{1}H\}$ (p.p.m., ${}^{2}H_8$]toluene, 22 °C) 228.5 [s, $J({}^{31}P_{-}{}^{183}W)$ 305 Hz, satellites of 26% integral intensity]; ${}^{1}H$ (δ , ${}^{2}H_8$]toluene, 22 °C) 3.41 (s. NMe₂).

[‡] Crystal data for $[(Bu^cO)_2W(\mu-PPh_2)]_2$ at $-157\,^{\circ}C$: a=11.062(4), b=19.185(8), c=21.969(2) Å, $\beta=114.51(2)^{\circ}$, Z=4, $D_c=1.614$ g cm⁻³ and space group $P2_1/c$. Of the 6465 reflections collected using Mo- K_{α} (λ 0.71069 Å) with $6 \le 20 \le 45^{\circ}$ only those 2904 having $F>3\sigma(F)$ were used in the full least-squares refinement. The W,O, and P atoms were refined anisotropically and the carbon atoms isotropically. H atoms were included at idealized fixed positions. Final residuals were R(F)=0.0529 and $R_{w}(F)=0.0522$. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

$$anti-1,2-W_2Cl_2(NMe_2)_4 + 2 LiPR_2 \xrightarrow{-78-0 \text{ °C}}$$

Tetrahydrofuran

 $1,2-W_2(PR_2)_2(NMe_2)_4$ (2)

LiPBut₂, we have now characterized both anti and gauche rotamers of the compound $W_2(PBu_2^t)_2(NMe_2)_{4}$. The terminal phosphido ligands contain non-planar $W-PC_2$ units with W-P bond distances longer than those expected for $W-P \sigma + \pi$ double bonds. We now find that reactions employing LiPcy₂ lead, at low temperatures (<0 °C), to an orange crystalline compound whose n.m.r. spectroscopic properties are consistent with a structure of type (II). However, at room temperature there is a relatively slow (t_∞ ca. 4 h) and irreversible reaction leading to a new brown crystalline compound for which the n.m.r. spectroscopic data† are consistent with a time-averaged symmetrically-bridged structure $[(Me_2N)_2W(\mu-Pcy_2)]_2$. Thus it seems likely that a fairly extensive class of these new d^3-d^3 bridged compounds may be accessible for tungsten.

We thank the National Science Foundation and the Wrubel Computing Center for support. B. W. E. is the 1986/87 Indiana University SOHIO Graduate Fellow.

Received, 20th January 1987; Com. 074

References

- 1 F. Huq, W. Mowat, A. Shortland, G. Wilkinson, and A. C. Skapski, J. Chem. Soc., Chem. Commun., 1971, 1079.
- 2 M. H. Chisholm and F. A. Cotton, Acc. Chem. Res., 1978, 11, 356.
- 3 M. H. Chisholm, Angew. Chem., Int. Ed. Engl., 1986, 25, 21.
- 4 M. H. Chisholm, B. W. Eichhorn, K. Folting, J. C. Huffman, and R. J. Tatz, *Organometallics*, 1986, 5, 1599.
- 5 M. H. Chisholm and R. J. Tatz, Organometallics, 1986, 5, 1590.
- 6 R. T. Baker, P. J. Krusic, T. H. Tulip, J. C. Calabrese, and S. S. Wreford, J. Am. Chem. Soc., 1983, 105, 6763.
- 7 W. E. Buhro, M. H. Chisholm, K. Folting, and J. C. Huffman, J. Am. Chem. Soc., 1987, 109, 905; further results to be published later