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The First Example of a d3-d3 Dinuclear Compound containing Four-co-ordinate Metal 
Atoms sharing a Pair of Bridging Ligands: [ ( B u ~ O ) ~ W ( ~ - P P ~ , ) ] ~  
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(p-Tolyl)(BufO)~W~W(OBut)~(p-tolyl) and Ph2PH (2 equiv.) react in hydrocarbon solvents to give toluene (2 equiv.) 
and [ ( B u ~ O ) ~ W ( ~ - P P ~ ~ ) ] ~  which in the solid state contains a puckered W2P2 moiety, W-W 2.59 A; in solution the 
W ~ ( V - P P ~ ~ ) ~  moiety is undergoing rapid inversion on the n.m.r. time-scale. 

Since Wilkinson'sl discovery of the unbridged compounds 
M2(CH2SiMe3)6, where M = Mo and W, numerous other 
examples of ethane-like molecules of formula X3%MX3, (I), 
or X 2 ( Y ) M ( Y ) X 2 ,  (11), have been prepared and charac- 
terized and the chemistry of the M-M triple bond of 
configuration 02n4 has been systematically developed.2.3 
Rather interestingly, not one example of the alternate 
structure (111) , where the metal atoms are four-co-ordinate 
and share a pair of bridging ligands, has yet been reported. 
The structural type (111), is, of course, the more common in 
co-ordination chemistry where dimerization of two co-ordina- 
tively unsaturated MX3 groups occurs by bridge formation e.g. 
as in A12C16. 

The preference for structural types (I) and (11), for Mo and 
W, reflects the importance of M-M bonding. In (111), the 
fusing of two tetrahedra along a common edge can at best lead 

to a M-M bond of configuration 02~~262 which, taken together 
with an increased M-M separation as a result of the p-X 
groups, will result in a significant sacrifice of M-M bond 
strength. The situation is also influenced by the x-donor 
properties of the ligands X and Y. In (I) and (11), n-donation 
to the metal atoms can occur without weakening the M-M 
bond whereas in (111) n-donation from the terminal ligands 
will further weaken the M-M bond by interaction with metal d 
orbitals otherwise used for M-M bonding. 

Formation of a d343 dinuclear compound of type (111) 
requires the introduction of at least two ligands Y that have a 
high thermodynamic preference for bridging two metal atoms. 
They should also be significantly weaker n-donor ligands than 
the groups X. The compounds of formula M2(PR2)2)6 where 
M = Mo or W and X = OR or NMe2 seemed likely to favour 
structural type (IIIb) over (11). A rational synthesis of such a 
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compound involves the reaction between a M2R'2( OR), 
compound,4 which is co-ordinatively unsaturated, and a 
dialkyl or diarylphosphine R2PH. We report here the first 
success of this synthetic strategy and our characterization of a 
compound of type (IIIb), namely [(Bu~O)~W( p-PPh2)I2. 

Hydrocarbon solutions of (p-t~lyl)(ButO)~W~W(OBut)~- 
(p-tolyl) react with Ph2PH (2 equiv.) according to equation (1) 
to yield dark orange solutions from which [ ( B U ~ O ) ~ W ( ~  
PPh2)12 is obtained in ca. 60% yield as brown crystals. The 

172-W2(p-t~lyl)2(0B~')4 + 2PhzPH A 
Hexane 

[(ButO)2W(y-PPh2)12 + 2 Toluene (1) 

new compound, like its precursor tungsten complex, is 
air-sensitive and must be handled in dry and deoxygenated 
solvents and atmospheres (N2). N.m.r. spectroscopy 
([zH,]toluene, 22°C) shows only one type of But0 and one 
type of PPh2, having equivalent phenyl rings. The 31P 
resonance possesses satellites due to coupling to two equi- 
valent 183W nuclei, and the @so-carbon atoms of the phenyl 
rings show both one-bond (40 Hz) and three-bond (4 Hz) 
couplings to phosphorus. These data? support a time-ave- 
raged molecular structure (IIIb) for [ ( B ~ t o ) ~ W ( p - P P h ~ ) l ~ ,  
having C2, symmetry. 

A ball-and-stick drawing of the structure found in the solid 
state$ is shown in Figure 1. While the general prediction of 

t Selected n.m.r. data for [ ( B U ~ O ) ~ W ( ~ - P P ~ ~ ) ] ~ :  31P{1H} (p.p.m., 
C6D6, 22 "C) 212.8 Is, J(31P-lS3W) 349 Hz, satellites of 25% integral 
intensity], 1H (6, C6D6, 22 "C) 1.27 (s, ButO); [(NMe2)zW(p-Pcy2)]2: 
31P{lH}(p.p.m, [2H8]toluene, 22°C) 228.5 [ s ,  J(31P-1*3W) 305 Hz, 
satellites of 26% integral intensity]; 1H (6, [2Hs]tOlUene, 22 "C) 3.41 

$ Crystal data for [(ButO),W( PPh2)I2 at -157°C: a = 13.062(4), 
b = 19.185(8), c = 21.969(2) 1: 6 = 114.51(2)", Z = 4, D, = 1.614 
g cm-3 and space group P21/c. Of the 6465 reflections collected using 
Mo-K, (A 0.71069 A) with 6 6 28 Q 45" only those 2904 having 
F > 34F) were used in the full least-squares refinement. The W,O, 
and P atoms were refined anisotropically and the carbon atoms isotrop- 
ically. H atoms were included at idealized fixed positions. Final 
residuals were R(F) = 0.0529 and R,(F) = 0.0522. Atomic co- 
ordinates, bond lengths and angles, and thermal parameters have 
been deposited at the Cambridge Crystallographic Data Centre. See 
Notice to Authors, Issue No. 1. 

(s, NMe2). 

Figure 1. A ball-and-stick diagram of the [ ( B U ~ O ) ~ W ( ~ - P P ~ ~ ) ] ~  
molecule viewed nearly perpendicular to the virtual 04W2 plane 
showing the puckered central WzP2 moiety: the dihedral angle 
between the P(3)-W(l)-W(2 and P(4)-W(l)-W(2) planes is 136.4'. 
Pertinent bond distances ( R ) and angles (") are W-W 2.591(2); 
W(l)-P(3), W(l)-P(4), W(2)-P(4) 2.36(1); W(2)-P(3) 2.33(1); 
W( 1)-O(5) 1.95( 1) ; W( 1)-O( 10) 1.86(2) ; W(2)-O( 15) 1.84(2); W(2)- 
O(20) 1.95(2); P(3)-W(l)-P(4) 101.2(2); P(3)-W(1)-0(5) 99.7(4); 
P(3)-W(1)-0(10) 126.2(5); P(4)-W(1)-0(5) 92.1(4); P(4)-W(1)- 
0 ( 10) P( 3)- W (2)-P( 4) 
102.1 (2) ; P( 3)-W (2)-O( 15) 1 19.8( 5 )  ; P( 3)-W (2)-O( 20) 89.8(5) ; 
P(4)-W(2)-0( 15) 125.0( 5 )  ; P(4)-W( 2)-O( 20) 99.2( 5 )  ; O( 15)-W (2)- 
O( 20) 1 13.9( 7) ; W ( 1 )-P( 3)-W (2) 67.0( 2) ; W ( 1 )-P( 4)- W (2) 66.6( 2). 

120.4( 5 )  ; O( 5)-W ( 1 )-O( 10) 1 10.4( 7) ; 

terminal alkoxides and bridging phosphido ligands is confir- 
med, the molecular structure is significantly distorted from 
(IIIb). The co-ordination about the tungsten atoms is grossly 
distorted from tetrahedral. The central W2(p-P)2 core is 
puckered, not planar, and the terminal But0 ligands are of 
two types, those with short W-0 distances, 1.85 A and large 
W-0-C angles, 158", and the others with long W-0 distances, 
1.96 A and smaller W-0-C angles, 128". The local co- 
ordination at each metal atom may be described as a trigonal 
bipyramidal (tbp) fragment, W02P2X, where X represents a 
missing axial vertex. The central WZO4P2 unit represents two 
cofacial tbp W02P2X units sharing a common pair of 
equatorial ligands, PPh2, and a common missing axial site X. 
In this way O(5) and 0(20), which have the long W-0 
distances, occupy the axial sites trans to the missing vertex. 
Diagrammatically, this is depicted by (IV). 

The W-W distance of 2.59 A is ca. 0.3 A longer than those 
in unbridged d343 ditungsten compounds and a simple M-M 
bonding description in the new phosphido-bridged compound 
is not viable since there must be extensive mixing of orbitals 
involved in M-M and M-ligand bonding. Nevertheless there 
must exist at least a M-M u bond, which in terms of the fusing 
together of two tbp W02P2X units would involve a bent M-M 
bond formed from overlap of d,2 orbitals at the p-X site. It 
seems likely that M-M bonding is responsible for the 
puckerin of the central M2P2 unit. The present W-W distance 
of 2.59 1 is similar to that reported for the d4-d4 anion 
W2(p-Pcy2)3(Pcy&- (cy = cyclohexyl), 2.55 

In related work, we have been studying the metathetical 
reaction shown in equation (2). For reactions involving 
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Tetrahydro fur an 
anti-1,2-W2C12(NMe2)4 + 2 LiPR2 > 

LiPBut2, we have now characterized both anti and gauche 
rotamers of the compound W2(PB~2t)2(NMe2)4.7 The termi- 
nal phosphido ligands contain non-planar W-PC2 units with 
W-P bond distances longer than those expected for W-P 0 + n 
double bonds. We now find that reactions employing LiPcy2 
lead, at low temperatures (<O"C), to an orange crystalline 
compound whose n.m.r. spectroscopic properties are consis- 
tent with a structure of type (11). However, at room 
temperature there is a relatively slow (tm ca. 4 h) and 
irreversible reaction leading to a new brown crystalline 
compound for which the n.m.r. spectroscopic data? are 
consistent with a time-averaged symmetrically-bridged struc- 
ture [(Me2N)2W(p-P~y2)]2. Thus it seems likely that a fairly 
extensive class of these new d343 bridged compounds may be 
accessible for tungsten. 
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